Datasheet 12 Gbps 910nm VCSEL

DESCRIPTION

Inneos' 910 nm 12 Gbps VCSEL was designed for commercial operation from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to meet the needs of commercial, medical, and industrial applications. The device allows for wirebond assemblies to support a variety of packaging options.

FEATURES

- Operating temperature from $0^{\circ} \mathrm{C}$ to 85°
- Operation up to 12 Gbps
- Top-emitting
- Single channel

APPLICATIONS

- Transmitter Optical Sub-Assemblies

ORDERING INFORMATION

PART NUMBER	DESCRIPTION
V910-12GSA-1THA	12 Gbps 910 nm VCSEL, Bare Die, $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

- Transceivers

Stress conditions greater than those listed under "Absolute Maximum Ratings" may permanently damage the device. Operation of devices beyond these stress conditions for extended periods may effect device reliability.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Storage Temperature Range	T_{S}	-40	100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{o}	0	85	${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}		8	V
Continuous Forward Current	I_{F}		10	mA
ESD Protection (HBM)			200	V

OPTICAL/ELECTRICAL SPECIFICATIONS

PARAMETER	CONDITIONS	SYMBOL	UNITS	MIN	TYPICAL	MAX
Emission Wavelength	$\begin{gathered} \mathrm{T}_{0}=0 \text { to } 85^{\circ} \mathrm{C} @ 5 \text { to } \\ 8 \mathrm{~mA} \end{gathered}$	λ_{c}	$n m$	904.0	910	918.0
Variation of Wavelength with Temperature	-	$\frac{\Delta \lambda}{\Delta T}$	$n m /{ }^{n} \mathrm{C}$	-	0.07	-
Spectral Width ${ }^{\text {a }}$	$\mathrm{T}_{0}=0^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$	σ_{λ}	$n m$	-	0.35	0.85
	$\mathrm{T}_{0}=85^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$					
Threshold Current ${ }^{\text {b }}$	$\mathrm{T}_{0}=0^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}$	$I_{\text {th }}$	$m A$	-	-	1.2
	$\mathrm{T}_{0}=30^{\circ} \mathrm{C}$			-	0.8	-
Average Operating Current		$I_{\text {avg }}$	$m A$	-	6	-
Operating Voltage	$\mathrm{T}_{0}=0^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$	V_{o}	V	-	-	2.5
	$\mathrm{T}_{0}=85^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$			-	2.0	-
Optical Output Power	$\mathrm{T}_{0}=0^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C} @ 5 \mathrm{~mA}$	P_{o}	$m W$	1.0	-	-
	$\mathrm{T}_{0}=30^{\circ} \mathrm{C} @ 5 \mathrm{~mA}$			-	1.5	-
Small Signal Bandwidth ${ }^{\text {c }}$	$\mathrm{T}_{0}=85^{\circ} \mathrm{C} @ 5 \mathrm{~mA}$	$f_{3 d B}$	GHz		9.0	-
Relative Intensity Noise ${ }^{\text {d }}$	$\mathrm{T}_{\mathrm{o}}=85^{\circ} \mathrm{C} @ 6 \mathrm{~mA}$	RIN 12	$d B /{ }_{H z}$	-	-128	-
Beam Divergence Half Angle (1/e $\left.{ }^{2}\right)^{e}$	$\mathrm{T}_{\mathrm{o}}=30^{\circ} \mathrm{C} @ 5 \mathrm{~mA}$	$\theta_{1 / 2}$	deg	-	15	-
Slope Efficiency ${ }^{\text {f }}$	$\mathrm{T}_{0}=30^{\circ} \mathrm{C}$	SE	$m W / m A$	-	0.75	-
Differential Resistance ${ }^{\text {g }}$	$\mathrm{T}_{0}=0^{\circ} \mathrm{C} @ 7 \mathrm{~mA}$	$R_{\text {diff }}$	Ω	-	65	-
	$\mathrm{T}_{0}=85^{\circ} \mathrm{C} @ 7 \mathrm{~mA}$			-	45	-

MECHANICAL OUTLINE

Dimensions are in microns.

PARAMETER CALCULATION METHODS USED

a. Spectral width is calculated based on FOTP-127 where the spectral level of the measured spectra below 20dB from maximum value are made zero and RMS spectral width is calculated based on formula

$$
\Delta \lambda_{R M S}=\sqrt{\frac{\sum_{i=1}^{N} P_{i} \lambda_{i}^{2}}{\sum_{i=1}^{N} P_{i}}}-\left(\frac{\sum_{i=1}^{N} P_{i} \lambda_{i}}{\sum_{i=1}^{N} P_{i}}\right)^{2}
$$

where ' λ_{i} ' is the wavelength and ' P_{i}^{\prime} ' is the optical power level of the $i_{\text {th }}$ point in the spectra.
b. The threshold current is derived by a linear fit method using 10% and 20% of peak optical power points. Threshold current is the point at which the optical power is zero using the linear fit.
c. The small signal bandwidth is obtained from optical response measurements at set current and reading the cut off frequency at which the power level is 3 dB down from the power level at DC.
d. Relative intensity noise: RIN $_{12}$ is the DC-RIN measured with -12 dB return. The DC-RIN is measured using an electrical spectrum analyzer with resolution bandwidth set to 1 MHz , calibrated photodetector and broad-band amplifiers. The RIN per unit bandwidth is calculated using the formula,

$$
R I N\left(\frac{d B}{H z}\right)=R I N[d B m]-10 \log _{10}\left(I_{p}^{2} R_{m}\right)[d B m]-A[d B]-10 \log _{10}(\Delta f[G H z])
$$

where 'RIN' is the peak RIN on electrical spectrum analyzer with resolution bandwidth ' Δf^{\prime}, ' I_{p} ' is the measured photocurrent, ' R_{m} ' is the input resistance of measurement system, and ' A ' is the amplification.
e. Beam divergence half-angle is derived from measurement of optical power in far-field at various angles. The half-angle is the angular deviation from center where the power reduces by ' $1 / \mathrm{e}^{\prime}$ '.
f. The slope efficiency is derived by linear fit method using 10% and 20% of peak optical power points. Slope efficiency is the slope of the lineal fit of optical power and drive current.
g. Differential resistance at point ' i ' of the measured LIV is calculated based on formula,

$$
R_{d i f f}=\frac{V_{i}-V_{i-1}}{I_{i}-I_{i-1}}
$$

where ' V_{i} ', ' V_{i-1} ' are the measured voltages at set currents ' I_{i} ' and ' $\mathrm{I}_{\mathrm{i}-1}$ ' respectively.

