Datasheet 12 Gbps 850nm VCSEL

DESCRIPTION

Inneos' 850nm 12 Gbps VCSEL was designed for commercial operation from 0°C to 85°C to meet the needs of medical, consumer electronics, datacom, and industrial applications. The device allows for top-side wirebond assembly to support a variety of packaging options.

FEATURES

- Operating temperature from 0°C to 85°
- Operation up to 12 Gbps
- Top-emitting
- Single channel

APPLICATIONS

- **Transmitter Optical Sub-Assemblies**
- Transceivers

ORDERING INFORMATION

PART NUMBER	DESCRIPTION	
V850-12GSA-1THA	12 Gbps 850 nm VCSEL, Bare Die,	
	0°C to 85°C, Gel-Pak	
V850-12GSA-1TRA	12 Gbps 850 nm VCSEL, Bare Die,	
	0°C to 85°C, Tape 6-in Ring	
V850-12GSA-1TSA	12 Gbps 850 nm VCSEL, Bare Die,	
	0°C to 85°C, Tape 8-in Ring	

ATTENTION: OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DEVICES

Stress conditions greater than those listed under "Absolute Maximum Ratings" may permanently damage the device. Operation of devices beyond these stress conditions for extended periods may effect device reliability

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Storage Temperature Range	Ts	-55	125	°C
Operating Temperature Range	To	0	85	°C
Reverse Voltage	VR		8	V
Continuous Forward Current	lf		10	mA
ESD Protection (HBM)			100	V

12 Gbps 850nm VCSEL

OPTICAL/ELECTRICAL SPECIFICATIONS

Datasheet

PARAMETER	CONDITIONS	SYMBOL	UNITS	MIN	TYPICAL	MAX
Emission Wavelength	T=30°C @ 6mA	λ_c	nm	844	-	858
Variation of Wavelength with Temperature	-	$\frac{\Delta\lambda}{\Delta T}$	^{nm} /°C	-	0.07	-
Spectral Width ^a	T₀=30°C @ 6mA	σ_{λ}	nm	-	-	0.6
Threshold Current ^b	T₀=30°C	I _{th}	mA	-	1	1.5
Average Operating Current		I _{avg}	mA	-	6	-
Operating Voltage	T₀=0°C,+85°C @ 5mA	V	V	-	-	2.4
	T₀=30°C @ 5mA	Vo		-	1.8	-
Optical Output Power	T₀=85°C @ 5mA	ת	mW	1.0	-	-
	T₀=30°C @ 5mA	P_0		-	1.5	-
Small Signal Bandwidth ^c	T₀=85°C @ 5mA	f _{3dB}	GHz	-	12	-
Relative Intensity Noise ^d	T₀=85°C @ 7mA	RIN ₁₂	$\frac{dB}{Hz}$	-	-128	-
Beam Divergence Half Angle (1/e²) ^e	T₀ =30°C @ 7mA	$\theta_{1/2}$	deg	-	15	_
Slope Efficiency ^f	T₀=30°C	SE	^{mW} / _{mA}	0.3	-	0.6
Differential Resistance ^g	T₀=30°C @ 8mA	<i>R_{diff}</i>	Ω	35	-	70

MECHANICAL OUTLINE

Dimensions are in microns.

NOTES UNLESS OTHERWISE SPEC FED: 1. NITEPRET DRAWING IN ACCORANCE WITH ASME Y14.5-2009. 2. SUBSTRATE MATERIAL: GAAS. 3. WREBOND PAD MATERIAL: I IMI GOLD. 4. WREBOND SHALL E CHLIC CONTAINED WITHIN BOND PAD OPENINGS.

ELECTROSTATIC-DISCHARGE SENSITIVE DEVICE: FOLLOW ESD PROTECTIVE HANDLING PROCEDURES IN ACCORDANCE WITH ANSI/ESD S20.20-2014.

12 Gbps 850nm VCSEL

PARAMETER CALCULATION METHODS USED

Datasheet

a. Spectral width is calculated based on FOTP-127 where the spectral level of the measured spectra below 20dB from maximum value are made zero and RMS spectral width is calculated based on formula

$$\Delta \lambda_{RMS} = \sqrt{\frac{\sum_{i=1}^{N} P_i \lambda_i^2}{\sum_{i=1}^{N} P_i} - (\frac{\sum_{i=1}^{N} P_i \lambda_i}{\sum_{i=1}^{N} P_i})^2}$$

where ' λ_i ' is the wavelength and 'P_i' is the optical power level of the i_{th} point in the spectra.

b. The threshold current is derived by a linear fit method using 10% and 20% of peak optical power points. Threshold current is the point at which the optical power is zero using the linear fit.

c. The small signal bandwidth is obtained from optical response measurements at set current and reading the cut off frequency at which the power level is 3dB down from the power level at DC.

d. Relative intensity noise: RIN₁₂ is the DC-RIN measured with -12dB return. The DC-RIN is measured using an electrical spectrum analyzer with resolution bandwidth set to 1MHz, calibrated photodetector and broad-band amplifiers. The RIN per unit bandwidth is calculated using the formula,

$$RIN\left(\frac{dB}{Hz}\right) = RIN\left[dBm\right] - 10\log_{10}\left(I_p^2R_m\right)\left[dBm\right] - A\left[dB\right] - 10\log_{10}(\Delta f\left[GHz\right])$$

where 'RIN' is the peak RIN on electrical spectrum analyzer with resolution bandwidth ' $\Delta f'$, ' I_p ' is the measured photocurrent, ' R_m ' is the input resistance of measurement system, and 'A' is the amplification.

e. Beam divergence half-angle is derived from measurement of optical power in far-field at various angles. The half-angle is the angular deviation from center where the power reduces by '1/e'.

f. The slope efficiency is derived by linear fit method using 10% and 20% of peak optical power points. Slope efficiency is the slope of the lineal fit of optical power and drive current.

g. Differential resistance at point 'i' of the measured LIV is calculated based on formula,

$$R_{diff} = \frac{V_i - V_{i-1}}{I_i - I_{i-1}}$$

where 'V_i', 'V_{i-1}' are the measured voltages at set currents 'I_i' and 'I_{i-1}' respectively.

INNEOS • 5700 Stoneridge Drive, Ste 200, Pleasanton, CA 94588 • tel: +1 (925) 226-0138 • web: www.inneos.com • email: contact@inneos.com